Silicon Controlled Rectifier 1200 Volts, 650 A RMS C397/C398 The General Electric C397 and C398 Silicon Controlled Rectifiers are designed for power switching at high frequencies. These are all-diffused Press-Pak devices employing the field-proven amplifying gate. #### **FEATURES:** - · Fully characterized for operation in inverter and chopper applications. - · High di/dt ratings. - High dv/dt capability with selections available. - Rugged hermetic glazed ceramic package having 1" creepage path. IMPORTANT: Mounting instructions on the mounting clamp specifications at back of this sheet must be followed. # HIGH FREQUENCY CURRENT RATINGS Equipment designers can use the C397/C398 SCR's in demanding applications, such as: - Choppers - Inverters - Regulated Power Supplies - Sonar Transmitters - Induction Heaters - Radio Transmitters - Cycloconverters - DC to DC Converters - · High Frequency Lighting #### FOR SINEWAVE OPERATION Like the Type C140/141, C158/159 and C358 SCR's, the C397/C398 SCR is rated for: - · Peak Current - VS. - · Pulse Width - Frequency - Case Temperature ## FOR RECTANGULAR WAVE OPERATION GE now introduces a new, high-frequency rating for the C397/398 SCR, which is: - · Peak Current - VS. - · di/dt of Leading Edge - Frequency - Duty Cycle - Case Temperature ## **CHARACTERISTICS** | TEST | SYMBOL | MIN. | TYP. | MAX. | UNITS | TEST CONDITION | |---|-------------------------|------|----------|------|---------|---| | Repetitive Peak Reverse | I _{RRM} | _ | 5 | 20 | mA | $T_{\rm J}$ = +25°C | | and Off-State Current | and | | | | 11111 | | | | I _{DRM} | | | | | $V = V_{DRM} = V_{RRM}$ | | Repetitive Peak Reverse
and Off-State Current | I _{RRM}
and | _ | 20 | 45 | mA | $T_J = 125$ °C | | and on place carrent | I _{DRM} | | | | | $V = V_{DRM} = V_{RRM}$ | | Thermal Resistance | $R_{\theta JC}$ | _ | .05 | .06 | °C/Watt | Junction-to-Case (DC) (Double-Side Cooled) | | Critical Rate-of-Rise of
Off-State Voltage (Higher | dv/dt | 200 | 500 | _ | V/μsec | T _J = 125°C, Gate Open. V _{DRM} = Rated,
Linear or Exponential Rising Waveform. | | values may cause device
switching) | | | | | | Exponential dv/dt = $\frac{V_{DRM}}{\tau}$ (.632) | | Higher minimum dv/dt selections available – consult factory. | | | | | | | | DC Gate Trigger Current | I_{GT} | - | 50 | 150 | mAdc | $T_C = +25^{\circ}C, V_D = 6 \text{ Vdc}, R_L = 3 \text{ Ohms}$ | | | | _ | 75 | 300 | | $T_C = -40^{\circ}C$, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$ | | | | | 15 | 125 | | $T_C = +125^{\circ}C$, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$ | | DC Gate Trigger Voltage | V _{GT} | _ | 3 | 5 | Vdc | $T_C = -40$ °C to 25°C, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$ | | | | _ | 1.25 | 3.0 | | $T_C = 25^{\circ}\text{C to } +125^{\circ}\text{C}, V_D = 6 \text{ Vdc},$
$R_L = 3 \text{ Ohms}$ | | | | 0.15 | _ | _ | | $T_C = 125$ °C, V_{DRM} , $R_L = 1000$ Ohms | | Peak On-State Voltage | V_{TM} | | 2.7 | 3.0 | Volts | $T_C = +25$ °C, $I_{TM} = 3000$ Amps Peak.
Duty Cycle $\leq .01$ %. Pulse Width = 1 ms. | | Turn-On Delay Time | t _d | - | 0.5 | _ | μsec | T_C = +25°C, I_{TM} = 50 Adc, V_{DRM} . Gate
Supply: 20 volt open circuit, 20 ohms, 0.1
μ sec max. rise time. $\dagger\dagger$, $\dagger\dagger\dagger$ | | Conventional Circuit Commutated Turn-Off Time (with Reverse Voltage) | t _q | | | | μsec | (1) T_C = +125°C (2) I_{TM} = 500 Amps. (3) V_R = 50 Volts Min. (4) V_{DRM} (Reapplied) (5) Rate-of-rise of reapplied off-state | | C398
C397 | | - | 35 | † † | | voltage = 20 V/µsec (linear) (6) Commutation di/dt = 25 Amps/µsec (7) Repetition rate = 1 pps. (8) Gate bias during turn-off interval = 0 volts, 100 ohms | | C398 | | | 30 | 40 | | (1) $T_C = +125^{\circ}C$ | | C397 | | - | 45 | 60 | | (2) I_{TM} = 500 Amps. (3) V_R = 50 Volts Min. (4) V_{DRM} (Reapplied) (5) Rate-of-rise of reapplied off-state voltage = 200 V/μsec (linear) (6) Commutation di/dt = 25 Amps/μsec (7) Repetition rate = 1 pps. (8) Gate bias during turn-off interval = 0 volts, 100 ohms | | Conventional Circuit Commutated Turn-Off Time (with Feedback Diode) C398 C397 | ^t q(diode) | 1 1 | 40
60 | † | µseс | T_C = +125°C I_{TM} = 500 Amps V_R = 1 Volt V_{DRM} (Reapplied) Rate-of-rise of reapplied off-state voltage = 200 V/μsec (linear) Commutation di/dt = 25 Amps/μsec Repetition rate = 1 pps. Gate bias during turn-off interval = 0 volts, 100 ohms | [†]Consult factory for specified maximum turn-off time. ††Delay time may increase significantly as the gate drive approaches the I_{GT} of the Device Under Test. †††Current risetime as measured with a current probe, or voltage risetime across a non-inductive resistor. # RECTANGULAR WAVE CURRENT RATING DATA **DUTY CYCLE - 50%** DUTY CYCLE - 25% 4. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS di/dt ($T_C = 65^{\circ}C$) 5. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 90^{\circ}C$) 6. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 65^{\circ}C$) 7. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 90^{\circ}C$) NOTES: (SEE SINE WAVE DATA) ### C397/C398 #### 11. MAXIMUM ON-STATE CHARACTERISTICS SUB-CYCLE SURGE (NON-REPETITIVE) ON-STATE CURRENT AND I²t RATING 12. GATE TRIGGER CHARACTERISTICS AND POWER RATINGS #### NOTES: - The locus of possible dc trigger points lies outside the boundaries shown at various case temperatures. - 2. 20V-20 is the minimum gate source load line when rate of circuit current rise >100 amp/ μ s or anode rate of current rise >200 amps/ μ s (Tp = 5 μ s min., 0.5 μ s max. rise time.) Maximum long term repetitive anode di/dt = 500 amps/ μ s with 20V - 20 Ω gate source. 13. SURGE (NON-REPETITIVE) ON-STATE CURRENT 15. TYPICAL RECOVERED CHARGE (125°C) SINEWAVE CURRENT WAVEFORM