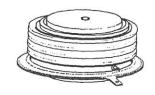
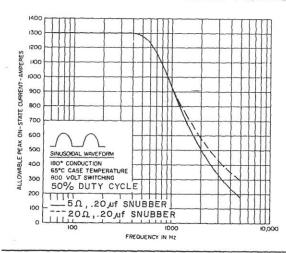
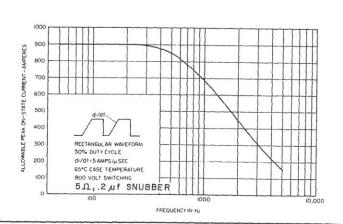
Silicon Controlled Rectifier 1200 Volts, 650 A RMS

C397/C398



The General Electric C397 and C398 Silicon Controlled Rectifiers are designed for power switching at high frequencies. These are all-diffused Press-Pak devices employing the field-proven amplifying gate.


FEATURES:


- · Fully characterized for operation in inverter and chopper applications.
- · High di/dt ratings.
- High dv/dt capability with selections available.
- Rugged hermetic glazed ceramic package having 1" creepage path.

IMPORTANT: Mounting instructions on the mounting clamp specifications at back of this sheet must be followed.

HIGH FREQUENCY CURRENT RATINGS

Equipment designers can use the C397/C398 SCR's in demanding applications, such as:

- Choppers
- Inverters
- Regulated Power Supplies
- Sonar Transmitters
- Induction Heaters
- Radio Transmitters
- Cycloconverters
- DC to DC Converters
- · High Frequency Lighting

FOR SINEWAVE OPERATION

Like the Type C140/141, C158/159 and C358 SCR's, the C397/C398 SCR is rated for:

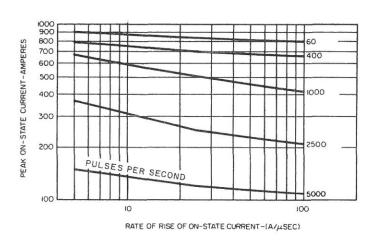
- · Peak Current
 - VS.
- · Pulse Width
- Frequency
- Case Temperature

FOR RECTANGULAR WAVE OPERATION

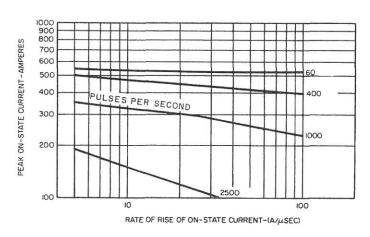
GE now introduces a new, high-frequency rating for the C397/398 SCR, which is:

- · Peak Current
 - VS.
- · di/dt of Leading Edge
- Frequency
- Duty Cycle
- Case Temperature

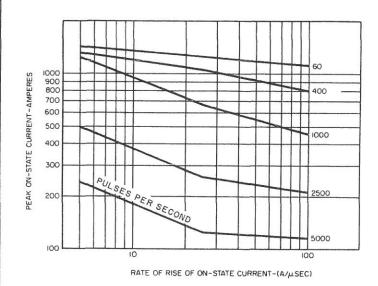
CHARACTERISTICS

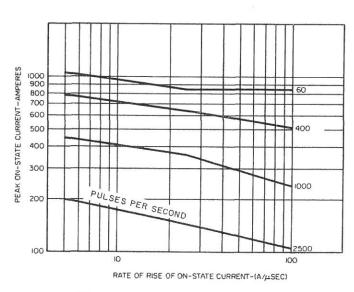

TEST	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITION
Repetitive Peak Reverse	I _{RRM}	_	5	20	mA	$T_{\rm J}$ = +25°C
and Off-State Current	and				11111	
	I _{DRM}					$V = V_{DRM} = V_{RRM}$
Repetitive Peak Reverse and Off-State Current	I _{RRM} and	_	20	45	mA	$T_J = 125$ °C
and on place carrent	I _{DRM}					$V = V_{DRM} = V_{RRM}$
Thermal Resistance	$R_{\theta JC}$	_	.05	.06	°C/Watt	Junction-to-Case (DC) (Double-Side Cooled)
Critical Rate-of-Rise of Off-State Voltage (Higher	dv/dt	200	500	_	V/μsec	T _J = 125°C, Gate Open. V _{DRM} = Rated, Linear or Exponential Rising Waveform.
values may cause device switching)						Exponential dv/dt = $\frac{V_{DRM}}{\tau}$ (.632)
Higher minimum dv/dt selections available – consult factory.						
DC Gate Trigger Current	I_{GT}	-	50	150	mAdc	$T_C = +25^{\circ}C, V_D = 6 \text{ Vdc}, R_L = 3 \text{ Ohms}$
		_	75	300		$T_C = -40^{\circ}C$, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$
			15	125		$T_C = +125^{\circ}C$, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$
DC Gate Trigger Voltage	V _{GT}	_	3	5	Vdc	$T_C = -40$ °C to 25°C, $V_D = 6 \text{ Vdc}$, $R_L = 3 \text{ Ohms}$
		_	1.25	3.0		$T_C = 25^{\circ}\text{C to } +125^{\circ}\text{C}, V_D = 6 \text{ Vdc},$ $R_L = 3 \text{ Ohms}$
		0.15	_	_		$T_C = 125$ °C, V_{DRM} , $R_L = 1000$ Ohms
Peak On-State Voltage	V_{TM}		2.7	3.0	Volts	$T_C = +25$ °C, $I_{TM} = 3000$ Amps Peak. Duty Cycle $\leq .01$ %. Pulse Width = 1 ms.
Turn-On Delay Time	t _d	-	0.5	_	μsec	T_C = +25°C, I_{TM} = 50 Adc, V_{DRM} . Gate Supply: 20 volt open circuit, 20 ohms, 0.1 μ sec max. rise time. $\dagger\dagger$, $\dagger\dagger\dagger$
Conventional Circuit Commutated Turn-Off Time (with Reverse Voltage)	t _q				μsec	 (1) T_C = +125°C (2) I_{TM} = 500 Amps. (3) V_R = 50 Volts Min. (4) V_{DRM} (Reapplied) (5) Rate-of-rise of reapplied off-state
C398 C397		-	35	† †		voltage = 20 V/µsec (linear) (6) Commutation di/dt = 25 Amps/µsec (7) Repetition rate = 1 pps. (8) Gate bias during turn-off interval = 0 volts, 100 ohms
C398			30	40		(1) $T_C = +125^{\circ}C$
C397		-	45	60		 (2) I_{TM} = 500 Amps. (3) V_R = 50 Volts Min. (4) V_{DRM} (Reapplied) (5) Rate-of-rise of reapplied off-state voltage = 200 V/μsec (linear) (6) Commutation di/dt = 25 Amps/μsec (7) Repetition rate = 1 pps. (8) Gate bias during turn-off interval = 0 volts, 100 ohms
Conventional Circuit Commutated Turn-Off Time (with Feedback Diode) C398 C397	^t q(diode)	1 1	40 60	†	µseс	 T_C = +125°C I_{TM} = 500 Amps V_R = 1 Volt V_{DRM} (Reapplied) Rate-of-rise of reapplied off-state voltage = 200 V/μsec (linear) Commutation di/dt = 25 Amps/μsec Repetition rate = 1 pps. Gate bias during turn-off interval = 0 volts, 100 ohms

[†]Consult factory for specified maximum turn-off time.
††Delay time may increase significantly as the gate drive approaches the I_{GT} of the Device Under Test.
†††Current risetime as measured with a current probe, or voltage risetime across a non-inductive resistor.

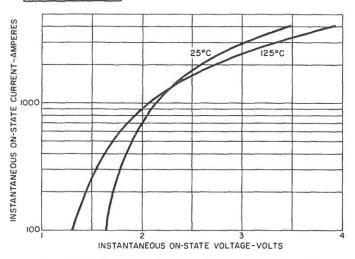

RECTANGULAR WAVE CURRENT RATING DATA

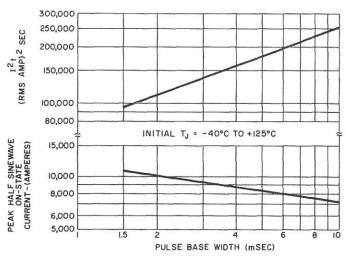
DUTY CYCLE - 50%


DUTY CYCLE - 25%

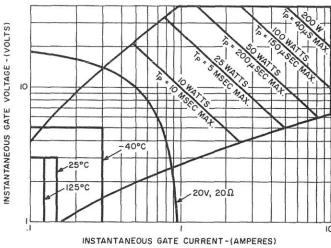

4. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS di/dt ($T_C = 65^{\circ}C$)

5. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 90^{\circ}C$)


6. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 65^{\circ}C$)

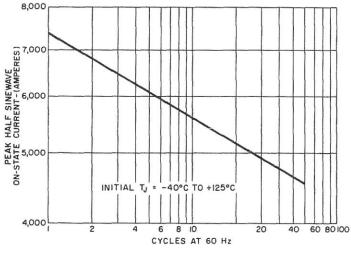

7. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. di/dt ($T_C = 90^{\circ}C$)

NOTES: (SEE SINE WAVE DATA)

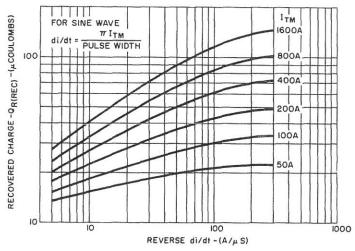

C397/C398

11. MAXIMUM ON-STATE CHARACTERISTICS

 SUB-CYCLE SURGE (NON-REPETITIVE) ON-STATE CURRENT AND I²t RATING



12. GATE TRIGGER CHARACTERISTICS AND POWER RATINGS


NOTES:

- The locus of possible dc trigger points lies outside the boundaries shown at various case temperatures.
- 2. 20V-20 is the minimum gate source load line when rate of circuit current rise >100 amp/ μ s or anode rate of current rise >200 amps/ μ s (Tp = 5 μ s min., 0.5 μ s max. rise time.)

Maximum long term repetitive anode di/dt = 500 amps/ μ s with 20V - 20 Ω gate source.

13. SURGE (NON-REPETITIVE) ON-STATE CURRENT

15. TYPICAL RECOVERED CHARGE (125°C) SINEWAVE CURRENT WAVEFORM