

Senior Design
CS400

Design Report
SubSim

I/O Group

 Submitted to: Steven L. Barnicki
 Submitted by: Steve Nolte
 Brian Rittner
 Scott Wadell
 Eric Wurtz
 Submitted on: 2/19/2003

http://www.surplussales.com/Motors/Motors-encod.html

Table of Contents

Senior Design.. 1
Table of Contents.. 2
Overview of project.. 5
Major System Components and their Interrelationships .. 6

Engine Simulator ... 6
Master Control ... 6
Microcontroller001 ... 6
Microcontroller002 ... 6

Hardware Documentation.. 7
Circuit Schematics ... 7

Entire Network Overview.. 7
MicroController002... 7
Shaft Encoder .. 7
Stepper Motor .. 11
Torpedo Firing Controls ... 12

Parts List.. 13
Design Steps Taken for Easy Maintenance of the Hardware 15

Software Documentation ... 16
Master Control ... 16

XML/RPC ... 16
Serial interface... 18

Serial Interface(Controller 001) .. 18
Serial Interface(Controller 002) .. 20

User interface Specifications ... 22
Steps Taken for Easy Maintenance... 22

ABET Concerns .. 23
Economic... 23
Environmental.. 23
Sustainability ... 23
Manufacturability.. 23
Ethical.. 23
Health and Safety .. 23
Social... 24

Project Management information .. 25
Time spent by Eric Wurtz on the design phase of project.. 25
Time spent by Brian Rittner on the design phase of project 33
Time spent by Scott Wadell on the design phase of project 33
Time spent by Steve Nolte on the design phase of project.. 33

Project Schedule ... 34
Miscellaneous Design Documentation .. 35

Circuit Layout... 35
Channel Capabilities .. 35
Pin Usage .. 36

 2

Design documentation... 38
Arrays .. 38

Checksum .. 41
Copy... 41
Non-volatile Copy... 41
Element.. 41
Length .. 42
Pointer.. 42
Print.. 43

ASYNCHRONOUS SERIAL .. 43
Summary of messages .. 43
Creation ... 44
InputBuffer ... 46
Look ... 46
Put.. 47
Queue .. 47
Timeout .. 47
Valid ... 48
Accepting Print ... 48

DIGITAL... 48
Creation ... 49
Asserted... 50
High.. 50
Low .. 50
NotAsserted ... 51
Off .. 51
On .. 51
Output .. 52
Pulse .. 52
Toggle .. 52
Value.. 52
Printing... 53

FILE... 53
Put.. 55
Get ... 56
Queue .. 56
Reset.. 56
Empty... 56
Name ... 56
Length .. 57
Readpoint... 57
Close.. 57
Element.. 57
Find .. 57
Lock ... 58
Unlock .. 58

 3

Help.. 58
PRINT TO .. 58
PRINT .. 58

OPERATING SYSTEM ... 59
Checksum .. 59
Copy... 60
Debug .. 61
ErrorAction ... 61
Free.. 61
Output .. 62
Protect.. 62
Reset.. 63
Run .. 63
RunMode ... 63
UserSwitch... 63
PRINT .. 64

PULSE COUNTER.. 64
Reset.. 66
Printing... 66

PULSE WIDTH IN ... 66
Creation ... 66
Go .. 67
Done .. 67
Period... 67
PRINT .. 68

PULSE WIDTH OUT ... 68
Creation ... 69
Asserted... 70
Count ... 70
NotAsserted ... 70
Format.. 71
On, Go ... 72
Off .. 72
Period... 72
Queue .. 72
Width.. 72
Printing... 73
Die.. 73

SERIALIO.. 73
Creation ... 74
On .. 74
Put.. 74
Off .. 74

SHAFT .. 75
Creation ... 75

 4

Overview of project

The I/O group is a subset of a larger team that is developing a Cobia SS-245 submarine
simulator for the Wisconsin Maritime Museum located in Manitowoc, WI. Our task is to
design and implement the I/O for all of the peripheral devices of the submarine
simulator. This is inclusive of the analog dials and gauges that are being simulated
from the conning tower of the submarine.

The specifics of our group’s responsibilities are based around a PC which will be called
the Master Control. This controller will be interfaced to another PC, the control for the
main simulator engine, via Ethernet and communicate by way of XML RPC. The Master
Control will control each the device controllers, which in turn control the simulator’s
peripheral devices. The bus that the controllers are on, along with the Master Control’s
interface to the bus, are under the responsibilities of the I/O group as well.

The I/O team’s work will focus on the I/O responsibilities for the following:

• Reading the rudder wheel position which will be taken using a bidirectional shaft
encoder.

• Displaying the torpedo firing boxes which will be controlled using a
microcontroller to light the LED’s and read the switch positions.

• The team is also responsible for the submarine gauges that display the compos
position, rudder motor speed, rudder angle, and submarine speed. These
gauges will consist of a stepper motor for the compos and servos for the others.

 5

Major System Components and their Interrelationships

Engine Simulator
 The engine simulator will be the computer that performs the actual simulation. It will be
the center of all data communications between all the computers.

Master Control
The Master Control bridges the I/O microcontrollers to the Engine Simulator. The
Master Control is linked to the Engine Simulator via an XML/RPC library which will
control state variables including: rudder wheel position, left and right motor speed,
gyrocompass position, torpedo status indicators, and the torpedo firing controls. While
the Master Control will be running windows 98SE, the shell will not be set to the
explorer.

The Master Control uses a RS232 serial interface to connect to the microcontrollers.

Microcontroller001
Microcontroller 001 will be VM-1 venom which will communicate through a serial
interface using terminal software. The venom runs a proprietary high level language
along with a real-time operating system. This allows the venom to respond to
instructions received from the Master Control to perform its tasks. These tasks include:
updating the rudder position gauge which is controlled by a servo using pulse width
modulation, updating the left and right motor speed indicators which are also driven by
servos, updating the gyrocompass which is controlled by a stepper motor, and taking
readings from the shaft encoder to determine the position of the rudder wheel.

Microcontroller002
Microcontroller 002 will be a VM-1 board using the same language and OS as above.
This board will again receive instructions through a serial terminal. The components of
the system that will be controlled by this board include: input from two torpedo firing
buttons, torpedo status lights and the torpedo ready switches.

 6

Hardware Documentation

The following documentation describes the hardware and its interconnectivity. This is
accomplished by use of detailed overviews, control panel layouts and circuit
schematics. A descriptive parts list will also be provided for further clarification.
Relevant design steps that allow easy hardware maintenance will also be provided.

Circuit Schematics
This section contains schematics for the circuits used in this project.

Entire Network Overview
The next page has a schematic of the entire submarine simulator as related to the I/O.

MicroController002
Following the overview page is a more detailed schematic of MicroController002 and its
peripherals.

Shaft Encoder
Then a description of the shaft encoder for the rudder will follow.

 7

O
S

:
W

in
do

w
s

M
em

or
y:

 2
56

M
B

 R
A

M
C

P
U

:
P

en
tiu

m
C

O
M

1

C
O

M
2

N
IC

0

10
/1

00
 M

bp
s

E
th

er
ne

t S
w

itc
h

R
ea

r T
or

pe
do

 C
on

tro
l

Fr
on

t T
or

pe
do

 C
on

tro
l

M
ic

ro
C

on
tro

lle
r

00
2

XM
L-

R
PC

 E
th

er
ne

t

XML-R
PC E

the
rne

t

6

D
ig

ita
l O

ut

D
ig

ita
l I

n

765

R
S

23
2

S
er

ia
l

D
ig

ita
l O

ut

D
ig

ita
l I

n

VC
C

Le
ft

M
ot

or
 S

pe
ed

Se
rv

o
M

ot
or

D
at

a

R
ig

ht
 M

ot
or

 S
pe

ed
Se

rv
o

M
ot

or
D

at
a

R
ud

de
r P

os
iti

on
Se

rv
o

M
ot

or
D

at
a

R
S

23
2

S
er

ia
l

H
-b

rid
ge

O
U

T1

O
U

T2

O
U

T3

O
U

T4

IN
1

IN
2

IN
3

IN
4

V
C

CR
ud

de
r W

he
el

S
ha

ft
E

nc
od

er

A B

G
yr

oc
om

pa
ss

B
ip

ol
ar

 S
te

pp
er

 M
ot

or

1A
1B

2A
2BH

om
e

M
ic

ro
C

on
tro

lle
r

00
1

J2
-2

1

J2
-0

8

J2
-2

0

J2
-1

1

J2
-2

2

J2
-2

3

J2
-1

0

J2
-2

4
J2

-2
6

J2
-2

8

H
E

N
G

ST
LE

R
R

I5
8-

D
50

00
E

F

Fu
ta

ba
FU

TM
00

31

M
in

eb
ea

S
M

T-
46

SG
S

-T
H

O
M

S
O

N
L2

93
D

Fu
ta

ba
FU

TM
00

31

Fu
ta

ba
FU

TM
00

31

To Master Control

Microcontroller002

RS232-Serial

D1
12

D2
16

D3
24

D4
28

C1
10

C2
14

C3
22

C4
26

O1
23

O2
25

O3
27

O4
29

D

SH ST

Q’7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

SH ST

D

SH ST

Q’7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

SH ST

D

SH ST

Q’7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

SH ST

D

SH ST

Q’7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

SH ST

VCC

Vcc

Vcc

Vcc

Vcc

1G 2G

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Vcc

GND

GND

GND

GND

GND

In0

In1

In2

In3

In4

In5

In6

In7

1G 2G

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Vcc GND

In0

In1

In2

In3

In4

In5

In6

In7

1G 2G

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Vcc GND

In0

In1

In2

In3

In4

In5

In6

In7

1G 2G

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Vcc GND

In0

In1

In2

In3

In4

In5

In6

In7

74244

74244

74244

74244

594

594

594

594Input

10

Switch

41
42
39
40

6
11
21
45
46
43

Input

2

Fire

4
44

AFT
DISPLAY

FORWARD
DISPLAY

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Shaft Encoder

PWR GND BA

To
Microcontroller001

A B

A

B

Idle

A

B

CW

A

B

CCW

B
A

Rudder Wheel Shaft Encoder

Stepper Motor

The following two diagrams show the setup up for the gyrocompass. It will be controlled
by MicroController002 that commands a stepper motor via an H-bridge.

 11

Torpedo Firing Controls

The following is a schematic of the original submarines fire controls along with a
narrative of its workings that will be emulated by the simulator.

1) Load the tube with torpedo.
2) In torpedo room, the MANUAL READY switch will get set when torpedo is

loaded.
3) The bottom ready light is illuminated in the conning tower for the corresponding

tube indicating that a torpedo has been loaded.
4) A torpedo tube will be selected for calibration from the conning tower by setting

the STAND BY switch.
5) The spindle calibrates the corresponding torpedo and the GYRO SPINDLE “In”

light is illuminated.
6) The GYRO SPINDLE “In” light goes off and the ANGLE SET light and middle

READY light illuminate.
7) Upon successful calibration, the corresponding top light for torpedo illuminates in

conning tower.
8) Pressing fire button turns on buzzer and FIRE light, followed by a torpedo launch.

 12

Parts List

The following is a list of the parts that we will need to implement the given project.

Part Description Manufacturer Part Number Price [£] Price # Distributor
VM-1 control computer

The VM-1 is the latest
credit-card-sized
control computer from
Micro-Robotics. Micro-Robotics Ltd. 5800 £72.50 $118.23 2 Micro-Robotics Ltd.

VM-1 application board The Application
Boards provide plug-in
access to RS232 and
RS485 serial ports;
various analogue,
digital and pulse IO;
keyboard and display
interfaces, including
both graphic and
alphanumeric
displays; two I2C
busses (long I2C
option);
Microwire®/SPI® and
an EEPROM. They
require an
unregulated DC
supply. Micro-Robotics Ltd. 5802 £90.00 $146.76 2 Micro-Robotics Ltd.

VM-1 Breakout board
Doubles as a Flash
programmer for
duplicating your
finished application, or
for updating your copy
of Venom-SC. Micro-Robotics Ltd. 5805 £34.08 $55.57 1 Micro-Robotics Ltd.

VM-1 Flash ROMS The Venom-SC
language is burned
into a flash device,
which is plugged into
the VM-1 controller.
This flash device also
doubles as the
application storage
area. When you have
finalized your
application, your code
is burned into the flash
so it is secure from
alteration. Of course
you can re-program
the flash, either to
change your
application, or to
update your version of
Venom-SC. Micro-Robotics Ltd. 5524 £15.00 $24.46 2 Micro-Robotics Ltd.

Futaba Servo Motor
S3003 Standard;
Torq/Spd 4.8V: 44/.23;
Torq/Spd 6.0V: 57/.19;
Bearing: Top; Size:
1.6X.8X1.4; Weight:
1.30 Futaba FUTM0031 3 Nathan Schlehlein

 13

Stepper Motor
STEPPER MOTOR,
400
STEPS/REVOLUTION
Minebea "Astrosyn"
Type 17PY-Q202-03.
Small precision bipolar
stepper motor. 0.9
degrees/ step. 400
steps / revolution. 12.5
ohm coils. 1.66" x
1.66" x 0.92" body.
0.2" dia. x 0.4" long
shaft. Four 2.25" leads
w/ four pin socket
connector, 0.1"
spacing. Minebea SMT-46 $6.75 1

ALL ELECTRONICS
CORP.

LEDs
 Unknown

L1-0-W5TH70-
1 $1.95/10 26 LED Supply

Hbridge chip for stepper
PUSH-PULL FOUR
CHANNEL DRIVER
WITH DIODES SGS-THOMSON L293D $2.70 1 Digi-Key

Shaft Encoder
12mm Hollow Shaft
10...30VDC=. Has 4
position connector. HENGSTLER

RI58-
D5000EF $25.00 1 Independent

Master Control 1
Driver chips for LED's Octal Tri-State Buffer Philips 74244 $2.44 4 Philips
Shift Register

8-Bit shift register
Fairchild
Semicinductor MM74HCT164 $0.25 4

Fairchild
Semicinductor

 14

Design Steps Taken for Easy Maintenance of the Hardware

There were many design steps taken to ensure easy maintenance of the hardware used
on this project. The steps are as follows:

• The CPU used on the main board is under-clocked so that no fan is needed.
This is done so that if there is a problem with the fan the CPU will not be
affected, such as the problem of overheating.

• The Master Control will net boot to eliminate the need for a hard drive. This will
add further stability to the Master Control and eliminate failure due to hard drive
complications.

• The Master Control will receive its image from an image server so that if the
Master Control image needs to be changed or updated, it only has to be updated
on the image server. This allows for the image to be changed in only one place
instead of having to change it on the Master Control.

• The microcontroller boards will use flash ROMs. so that if a software update is
required to take place all that is needed is to replace or flash the ROMs. This will
eliminate the task of having the Master Control load the program to the
microcontroller at every boot up. This will also ensure that the program is always
in memory at boot time and is ready to run.

• The torpedo firing display will use LEDs instead of tungsten bulbs. This will
lessen the probability that a bulb may burn out and have to be changed.

 15

Software Documentation

The following is a description of the major functions that will be written to drive the
hardware. A brief statement with regards to the user interface will also be discussed.

Master Control

XML/RPC

Description and purpose
This function will set the rudder position on the engine simulator via XML/RPC.
Function and signature
Void SetRdrPos(double Position)
Pre-conditions
None
Post-conditions
The rudder position will be set to the new value defined by Position.
Exception conditions
None
Special conditions
None

Description and purpose
This function will set the correct fire tube(s) on the engine simulator via XML/RPC.
These values will be Boolean. A “True” value will indicate an active tube while a “False”
value will indicate an inactive tube.
Function and signature
Void SetTorpFire(bool [10])
Pre-conditions
None
Post-conditions
The correct tubes will be set according to the Boolean array “bool [10]”.
Exception conditions
None
Special conditions
None

Description and purpose
This function will get the correct left motor speed from the engine simulator via the
XML/RPC. This value may then be passed to MicroController 001 to adjust the Left
Motor Speed Servo Motor.
Function and signature
double GetLSpeed()
Pre-conditions

 16

None
Post-conditions
The correct left speed value will be available to pass to MicroController 001.
Exception conditions
None
Special conditions
None

Description and purpose
This function will get the correct right motor speed from the engine simulator via the
XML/RPC. This value may then be passed to MicroController 001 to adjust the Right
Motor Speed Servo Motor.
Function and signature
double GetRSpeed()
Pre-conditions
None
Post-conditions
The correct right speed value will be available to pass to MicroController 001.
Exception conditions
None
Special conditions
None

Description and purpose
This function will get the correct position for the gyrocompass via the XML/RPC. This
value may then be passed to MicroController 001 to adjust the Gyrocompass Stepper
Motor.
Function and signature
double GetCompPos()
Pre-conditions
None
Post-conditions
The correct positon value will be passed to the Gyrocompass Stepper Motor.
Exception conditions
None
Special conditions
None

 17

Serial interface

Serial Interface(Controller 001)
Description and purpose
This function will send the correct value (speed) to the right servo motor. The function
will return a Boolean value; True is a successful set and False if otherwise.
Function and signature
Bool SetRSpeed(double Speed)
Pre-conditions
None
Post-conditions
The correct speed value will be passed to the right servo motor. A Boolean value will
be returned; True is successful and false if otherwise.
Exception conditions
None
Special conditions
None

Description and purpose
This function will send the correct value (speed) to the left servo motor. The function
will return a Boolean value; True is a successful set and False if otherwise.
Function and signature
Bool SetLSpeed(double Speed)
Pre-conditions
None
Post-conditions
The correct speed value will be passed to the left servo motor. A Boolean value will be
returned; True is successful and false if otherwise.
Exception conditions
None
Special conditions
None

Description and purpose
This function will send the correct value (position) to the Gyrocompass stepper motor.
The function will return a Boolean value; True is a successful set and False if otherwise.
Function and signature
Bool SetComp(double Position)
Pre-conditions
None
Post-conditions
The correct position value will be passed to the Gyrocompass stepper motor. A
Boolean value will be returned; True is successful and false if otherwise.
Exception conditions
None

 18

Special conditions
None

Description and purpose
This function will send the correct rudder value (position) to the Rudder Position Servo
Motor. The function will return a Boolean value; True is a successful set and False if
otherwise Function and signature
double SetRdrPos()
Pre-conditions
None
Post-conditions
The correct position value will be passed to the Rudder Position Servo Motor. A
Boolean value will be returned; True is successful and false if otherwise.
Exception conditions
None
Special conditions
None

 19

Serial Interface(Controller 002)

Description and purpose
This function will get the selected tube(s) from the front and rear Torpedo Display. The
function will return a vector containing Boolean values; True if tube is set and False if
otherwise.
Function and signature
Bool [10] GetTubeSel()
Pre-conditions
None
Post-conditions
The correct Boolean vector will be returned denoting the selected tube(s).
Exception conditions
None
Special conditions
None

Description and purpose
This function will set the indicators on the Front Torpedo Display. A Boolean value will
be returned; True is successful and false if otherwise.

*Note: For front and rear displays vector positions[0-2] are reserved for the feedback
 indicators.

 position[0] – Ready light
 position[1] – Gyro spindle “in”
 position[2] – Angle set
 postion[3-14] – Status lights

Function and signature
Bool SetFTorpDisp(bool Front [15])
Pre-conditions
None
Post-conditions
The Front Torpedo Display will be set as indicated by the Boolean vector Front.
Exception conditions
None
Special conditions
None

Description and purpose
This function will set the indicators on the Rear Torpedo Display. A Boolean value will
be returned; True is successful and false if otherwise.

 20

*Note: For front and rear displays vector positions[0-2] are reserved for the feedback
 indicators.

 position[0] – Ready light
 position[1] – Gyro spindle “in”
 position[2] – Angle set
 postion[3-10] – Status lights

Function and signature
Bool SetRTorpDisp(bool Rear [11])
Pre-conditions
None
Post-conditions
The Rear Torpedo Display will be set as indicated by the Boolean vector Rear.
Exception conditions
None
Special conditions
None
*Note: For front and rear displays vector positions[0-2] are reserved for the feedback
 indicators.

 21

User interface Specifications
There will be no user interface in the final implementation. However, we will be using
the standard console for simulation and debugging purposes. Prior to completion of the
project, this feature will be disabled.

Steps Taken for Easy Maintenance
The steps that were taken to ensure easy maintainability on the software side of the
project are as follows.

The interfaces between the Master Control and the microcontrollers are object oriented
so that objects may be added if need be. Furthermore the Master Control is interfaced
with the other parts of the simulator using XML/RPC. This provides for easy expansion
of the simulator if another aspect of the submarine is to be simulated in the future.

 22

ABET Concerns

The following are the issues that we will identify in order to meet ABET criterion 4.

Economic
The Wisconsin Maritime Museum has generously offered to fund this project.
Therefore, while there may not be a strict constraint on monetary issues, it will be our
goal to make the best use of the equipment and devices that are purchased. In
addition, we will require the time of other individuals in helping meet our goals. Hence
we need to be clear in our requests so that time is not wasted.

Environmental
This project will not produce any waste when it is completed. In construction of the
project, consideration should be put into maximizing the use of materials so that little is
left unused.

Sustainability
Thorough and clear documentation needs to be made so that future enhancements and
add-ons to the submarine simulator may be made. The maintenance of the simulator
after we finish our product will not be done by our team, which makes it critical that
others be able to understand what we did and how it works if problems arise.

Manufacturability
In constructing our project the technology, both hardware and software, will need to be
researched thoroughly so that conflicts do not occur. Hardware constraints are
especially important to consider because they will need to interface with the parts of the
simulator that other teams are building.

Ethical
One of the goals for any simulator is to make it as close to the original as possible.
Therefore, staying true to the way things worked in the time the real submarine was in
commission is something to strive for. Most visitors to the museum that will run the
simulator have never been in a real submarine, and so our simulator should not give
them the wrong impressions.

Health and Safety
Safety is a very important aspect because this will be a commercial product for public
visitors to the museum to use. As our part of the project is designed and implemented,
concern for the safety of others that will use the simulator is important to keep in mind.
This project will make use of electrical power that carries potential harm to humans.
The project also needs to be safely accessible by the handicapped.

 23

Social
Everyone in our group lives off-campus, which will be a challenge to find times to meet
together. Also, there will be other people such as the curator of the museum and other
individuals of different ages and backgrounds that will be helping with this product. The
project as a whole includes a rather diverse group of people.

 24

Project Management information

The following is a summary of the minutes spent by each group member on the design
portion of the project:

Time Management

78.9, 26%

70.4, 24%72.7, 24%

76.2, 26%

Steve Nolte

Brian Rittner

Scott Wadell

Eric Wurtz

Time spent by Eric Wurtz on the design phase of project
12-06-2002-11:00 to 12:00

Met for an hour with the entire sub team to get en overview of what we are actually
simulating. Also I discussed with Nathan some specifics of the I/O sub Sub Team’s
part. The I/O consists of an I/O computer connected to the “main engine computer” by
way of either net. They will communicate using XML RPC. The I/O computer with have
to control a large number of microcontrollers that control a large number of dials,
switches and lights, along with interactive spotlighting to direct the users attention to the
specific gages during the simulating.

Among the items to be designed include: The interface between the I/O computer and
the microcontrollers such as the media and the protocol; The software that relays the
XML RPC to the controller bus; what to use to control the spot lights.
-60

12-13-2002-12:00 to 14:00

 25

I was given a tour by Nathan of the WWII submarine that we will be simulating. We
looked at the actual location that the simulator will be built in. We also looked at some
of the gages that we taken from other submarines that we could use in the simulator.
-120

01-03-2003-10:36 to 14:16

Our group began the number 1 requirement of CS400, the proposal. Our group
completed the proposal as well.
-220

01-03-2003-14:22 to 15:56

We started the number 2 requirement of CS400, the project initiation and preliminary
schedule.

The positions were filled as follows

Steve Nolte The Design Manager
Brian Rittner The Technology Manager
Scott Wadell Documentation Manager
Eric Wurtz Project Manager

Brian Rittner has knowledge of the I2C bus which might be implemented so he was
made technology manager. The rest of the jobs were filled arbitrarily.

Milestones and their deadlines were set to give sufficient time for the work to be done
before the respective report was required.

We completed the number 2 requirement, the project initiation and preliminary
schedule.
-94

01-06-2003-13:00 to 13:56

Started work on criteria for technology research. Scheduled meeting times
-56

01-08-2003-11:00 to 16:00

Researched chips with the I2C BUS implemented in hardware along with specs on the
I2C bus.

 26

Initial research on the I2C shows that it will probably work for our controller bus. We will
use a USB to I2C interface chip to connect the Master Control to the I2C bus.

A candidate chip was selected for the USB to I2C interface.

We need to find out more of the specifics of the helmsmen’s display, particularly the
odometer and the rudder indicator.

On the software shit, the library of calls for the I2C interface on the PC is written in C
while the XML RPC library that will be provided for us might be in JAVA. We will have
to find a way for the Master Control master software, probably written in C++, to be able
to interact with JAVA software.
-240

01-09-2003-13:15 to 18:38

Steve, Rittner, and I discussed the entire sub simulator layout with Schlehlein. All the
PCs used in the simulator should use a boot ROM to boot off an image server. This is
so that there is no drive failure within a PC that is built in to part of the simulator
requiring it to get taken apart. This also requires us to use a small OS. Schlehlein said
that he is preparing his own distribution of Linux and that we could probably use that as
well. All that we require is a solid networking driver and USB driver. We would also
prefer a good environment to write the C++ code.

The XML RPC library that we will be using is not completed but we should have access
to that fairly soon. It should work in C++.

The final list of the simulator peripherals that we are going to implement include: the
helmsmen’s display, rudder wheel, and the torpedo fire control. We will not be able to
get extra fire control boxes like we did the helmsmen’s display and rudder wheel so we
will have to make that our selves.

The fire control team has done some preliminary work on the boot ROMs. Schlehlein
said that he would he would share that information with the I/O team and we could
possibly continue work on that together.

The layout for the I/O section of the simulator includes:

1) A Master Control PC
2) A USB to I2C interface board
3) An I2C hub
4) A servo controller for the helmsmen’s display
5) A shaft encoder and controller to get reading from the rudder wheel
6) A controller or two that control the fire control boxes

 27

We have to take care of the following soon:

1) Look for a shaft encoder to work with the rudder wheel
2) Find a good USB to I2C board
3) Find a chip to handle all the servers in the helmsmen’s display.
4) Find two chips to handle the fire control boxes
5) Find a chip to handle the shaft encoder output from the rudder wheel

We did a large amount of searching for a way to interface the Master Control to the
controller bus. We found a number of interfaces but they only had drivers for windows.
-323

01-10-2003-13:00 to16:00

Our group continues to look for a way to interface the Mater Control to the I2C controller
bus. We found a few implementations that would work exceptionally well; however,
drivers only exist for windows. What we decided we will probably do is connect a
standard uC to the PC through the serial port and interface that to a parallel to I2C
converter.
-180

01-13-2003-14:00 to 19:02

We finalized our criteria for are parts selection and the peripherals that we will be
controlling. We had a discussion of the use of servos vs. stepper motors for control of
most of the analog peripherals. We started to decided on the final amount of digital and
analog I/O ports we will be needing. One issue continues to be how to mount the
rudder wheel and get data off of it. The rudder wheel requires an amount of resistance
as well.

We need to do:

1) Exactly what peripherals we will be controlling
2) The type and amount of ports required to control the peripherals
3) The controllers and boards used to control the peripherals
4) The type of rotary display control used behind the peripherals

The list of peripherals includes:

1) Motor order telegraph (left and right motor speed indicator)
2) Rudder angle indicator
3) Rudder wheel
4) Compass
5) Torpedo status indicator and firing boards

a. Status LED’s

 28

b. Fire buttons
c. Torpedo control

Left Motor Speed– Servo
Right Motor Speed– Servo
Rudder angle indicator-Servo
Compass – Stepper motor
Torpedo status indicator and firing boards
 26 LED’s-5 digital out though a MUX for address and 1 data.
 10 Binary switches-10 Digital inputs
 2 Fire buttons -2 Digital inputs
Rudder Wheel input (shaft encoder)

We ended up shit canning I2C all together. Schlehlein was concurred about the cost of
all the hardware to implement the bus as the controller bus used by everything. Instead
we are going to use parallel, PS2, and serial ports for connections to all the peripherals.
There will now be two PC’s used to control the peripherals, one for the torpedo control
and the other for the rudder wheel, and various other analog displays.
-302
--1595

01-14-2003-16:45 to 21:00

The entire team began the technology report. The first draft was finished.
-255
--1850

01-15-2003-15:23 to 18:05

I adding the finishing touches on the technology report after Scott looked it over and
made corrections to it. Every group member got on MSN to continue work on the
paper. A messy draft was sent to Steve for him to review and format correctly. When
he gets done every group member will look it over then I’ll ship it.
-162
--2012

01-16-2003-12:00 to 15:00

Did our presentation
-180

01-27-2003-13:16 to 16:56

 29

We began to put together a list of items that we need to order or obtain

1) Controller 001(Vm-1 with the application board)
a. 4 digital output with pulse width modulation for servo and stepper

motor
b. 1 digital input from stepper motor
c. ~6 digital inputs for shaft encoder
d. RS232 serial for interface to Master Control

2) Controller 002(VM-1 with application board)
a. 10 digital inputs for the switches for torpedo fire selection
b. 2 digital inputs for the torpedo fire buttons
c. up to 26 digital outputs for the torpedo status lights

3) 2 Servos for left and right motor speed indicators
4) Servo for rudder position indicator
5) Stepper motor for gyrocompass
6) Shaft Encoder for rudder wheel(Dynopar HS35)

a. http://www.dynapar-
encoders.com/frameset.asp?Page=seriesHS35.htm

7) 2 Torpedo fire buttons for Forward and Aft
8) Forward torpedo firing control box

a. 6 torpedo selection switches
b. 15 Status lights

9) Aft torpedo firing control box
a. 4 torpedo selection switches
b. 11 status lights

10) The master control PC
a. 2 RS232
b. NIC with boot ROM for network boot

We have to come up with a design for the rudder wheel so we know what kind of
encoder to get and how to put it on.

We need to get a hold of the crappy embedded Linux that we will be using and get it
loaded on the Master Control so we can start to mess around with the software libraries
we will be using. Nathan said something about getting a boot server in the SDL so we
can perform network boots in it for development and testing. This should be done soon.
We need to know about the limitations of our Master Controls software environment
under the constraints.

After further investigation in to the VM-1 uC, it will fulfill all our I/O needs for both
controller 001 and 002. A shaft encoder was found as well. The encoder that was
decided upon was the Dynopar HS35. This encoder is a bidirectional hollow encoder
that supports steps from 1-1024 increments per reading.

I started a detailed schematic of the topology.

 30

http://www.dynapar-encoders.com/frameset.asp?Page=seriesHS35.htm
http://www.dynapar-encoders.com/frameset.asp?Page=seriesHS35.htm

Nathan just informed us that the museum will not provide any materials at all for our
project. We will have to make or purchase all our dials and gages. We are briefly
looking in to getting entire gages that take a digital input instead of making our own with
servos.
-220

01-29-2003-12:48 to 17:07

We started to plan out how we will get the design report done. Because the museum
fucked us we need to get dials that look “authentic” but I am guessing that this will
probably not happen now. We probably have to completely make the gages now.

We went through a schematic of the torpedo status lights and figured out how they
worked.

We need to talk to the software team to find out what variables they want to deal with.
-259

02-03-2003-14:00 to 19:08

We started to work on the design report due in week nine. We completed and major
system components and their interrelationships. We generated a project schedule for
the spring quarter. We put together a parts list but it is not yet complete.
-308
-2979

02-04-2003-14:00 to 16:00

Continued working on the design report. I started work on the complete circuit
schematics. Also, I helped Wadell and Rittner with the function prototypes.
-120

02-07-2003-13:00 to 16:00

 31

Using the VM-1 documentation, I began laying out a complete circuit schematic. The
documentation is not very good. You need to look at multiple PDF files to see what
data port relates to what pins.
-180
--3279

02-10-2003-10:25 to 20:00 less 1 hour

I began to wrap up the schematic. We found that, contrary to the board’s high level
documentation, the VM-1 boards do not have enough digital I/O. I designed a circuit
that allows a few outputs on the board to drive all the LED using multiplexers, latches,
and resistors. We decided that we would use a shift register to drive all the LED’s using
only 8 pins.

The schematics are finished. I am gathering all our information and pasting it in to the
report.

I am finishing up the report to submit.

I am getting all my time I did design work from my log to include in the report then I am
going to submit it
-505
--3784

02-14-2003-15:30 to 16:00

Began working on the final presentation and report.
-30
--3814

02-16-2003-19:30 to 02-17-2003-02:55

Continued work on final presentation and final report.
Completed the peer evaluation.
-445
--4259

02-18-2003-15:00 to

Met with group to finish the final report and presentation.
-315
--4574

 32

Time spent by Brian Rittner on the design phase of project
Complete and most recent listing can be found at: http://subsim.hn.org/plantrack/
Username: rittnerb
Password: Available on request

Time spent by Scott Wadell on the design phase of project
Complete and most recent listing can be found at: http://subsim.hn.org/plantrack/
Username: wadells
Password: Available on request

Time spent by Steve Nolte on the design phase of project
Complete and most recent listing can be found at: http://subsim.hn.org/plantrack/
Username: noltes
Password: Available on request

 33

http://subsim.hn.org/plantrack/
http://subsim.hn.org/plantrack/
http://subsim.hn.org/plantrack/

Project Schedule

Milestone Date Week
Have the Master Control network booting and usable 1 – start
Serial Interface on Master Control 1 – mid
Get debounced input from fire buttons displayed on terminal 1 – end
Get Readings from switches on fire boxes 2 – start
Complete H-bridge circuit with the stepper motor 2 – mid
Press Release for Seed Show March 21 2 – end
Implementation Schedule March 24 3 – start
Control a servo using a controller from a terminal on the PC 3 – start
Control the stepper motor using the controller from a terminal on the PC 3 – end
Control status LED’s from a terminal on the PC 4 – end
Get readings from the shaft encoder from a terminal on the PC 5 – start
Mid-term Report April 11 5 – end
Calibrate and align gauges 6 – start
Master Control SW handles the terminal interface 6 – mid
XML-RPC interface on Master Control 6 – end
Logs submitted for review April 18 6 – end
Bridging software on the Master Control 7 – start
Control the system using the XML-RPC 7 – end
Logs submitted for review April 28 8 – start
Install the servos in the gauges (perhaps done for us) 8 – mid
Install the stepper motor in the compass (perhaps done for us) 8 – mid
Install the LED’s on the fireboxes (perhaps done for us) 8 – mid
Install the switches on the fireboxes (perhaps done for us) 8 – mid
Projects Finished! May 2 8 – end
Implementation Report May 5 9 – start
Logs submitted for review May 12 10 – start
Final Project Report May 16 10 – end

 34

Miscellaneous Design Documentation

Circuit Layout

The following was derived from the documentation for the VM-1 board. The paper work
details the use of channels on how they can each be used for multiple purposes but
these channels are not pins. You must look at more documentation to determine the
pin and port that a channel uses.

Channel Capabilities

The following is a list of available channels and their raw digital I/O capabilities.

Channel Capabilities for uC002
Inputs Outputs Both Serial Misc

1
2

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

19
 20

21
 22
 23
 24
 25
 26
 27
 28
 30
 31

 35

 32
 33
 34
 35
 36
 37

40
41
42
43
44
45
46
47

Pin Usage

The following is a chart specifying the channel used, how it is used, and the channels
associated port and pin.

Microcontroller001
Usage Port Pin Channel Connect
PWM-1 J2 21 3 Left Motor Servo
PWM-2 J2 8 4 Right Motor Servo
PWM-3 J2 20 5 Rudder Position Servo
Digital
Out J2 22 7 Gyrocompass stepper motor 1a
Digital
Out J2 24 8 Gyrocompass stepper motor 1b
Digital
Out J2 26 9 Gyrocompass stepper motor 2a
Digital
Out J2 28 10 Gyrocompass stepper motor 2b
Digital
In-1 J2 11 19 Input from stepper motor for zero posisiton

QSE-1a J2 23 1
Quadrature shaft encoder for Rudder
wheel(a)

QSE-1b J2 10 2
Quadrature shaft encoder for Rudder
wheel(b)

Microcontroller002
Usage Port Pin Channel Connect
 J2 4 1 Front Torpedo Fire button
 J2 6 2 Torpedo selection switch for Front 1
 J2 11 19 Torpedo selection switch for Front 2
 J2 21 21 Torpedo selection switch for Front 3

 36

 J2 45 40 Torpedo selection switch for Front 4
 J2 46 41 Torpedo selection switch for Front 5
 J2 43 42 Torpedo selection switch for Front 6
 J2 44 43 Aft Torpedo Fire button
 J2 41 44 Torpedo selection switch for Aft 1
 J2 42 45 Torpedo selection switch for Aft 2
 J2 39 46 Torpedo selection switch for Aft 3
 J2 40 47 Torpedo selection switch for Aft 4
 J2 10 3 ShiftReg1 Clock
 J2 12 4 ShiftReg1 Data
 J2 14 5 ShiftReg2 Clock
 J2 16 6 ShiftReg2 Data
 J2 22 7 ShiftReg3 Clock
 J2 24 8 ShiftReg3 Data
 J2 26 9 ShiftReg4 Clock
 J2 28 10 ShiftReg4 Data

 37

Design documentation
The following data was taken from the VM-1 Object Reference Manual.

Arrays
Arrays may be created in the NV-ROM (non-volatile RAM area) to store variable
parameters that should be retained over power cycles. Arrays can hold data of the
following types, one per element:

• 8, 16 or 32-bit integer
• Floating point number
• Pointer (to global variable)
• String constant

Constant or Variable data
An Array may contain constant data (i.e. read-only), or variable data. These two major
types of array are created in very different ways. Arrays of constant data are defined at
the command line, in a similar way to procedures. This is because they ‘live’ in ROM,
and so have a similar life cycle. They are not created with MAKE or NEW. They are
not defined within a procedure. Arrays of variable data are defined either with MAKE or
NEW, just like other objects, or by taking a copy of a constant array.

Summary of messages
Checksum
Copy
Element
Length
Pointer
Reset
Valid
PRINT

 38

Creating a Constant Array
Constant arrays are created using the following syntax at the command line (i.e not
within a procedure’s TO…END):

 Array obj (Any Constant prototype , Int Constant n)
 Any constant_data ,
 Array
 Any constant_data ,
 …,
 END

Prototype is a value that typifies the type of data elements that the array will hold:

Prototype Element Type
8 | 8-bit integer
16 |16-bit integer
32 |32-bit integer
* | Floating point
“Some text” | String constant
@dummy_name | Pointer to a global

n defines the size of the array – the number of elements it holds.
Each line of constant data defines the value of an element. If there are fewer values
defined than the size of the array, then the rest of the array is filled with the last
defined value.

Examples:
The following defines an array of five 8-bit integers called lookup_data with the
values 2, 3, 5, 7 & 6.:

Array lookup_data (8 , 5)
2 , 3, 5, 7 , 6
END

 39

The next example defines an array of six string constants called phrases with the
values “Hello” “Goodbye” “Chow” “Chow” “Chow” and “Chow”.

Array phrases (“” , 6)
“Hello”
“Goodbye”
“Chow”
END

The example below defines an array of three procedure-pointers called handler.

Array handler (@dummy , 3)
@first_proc
@second_proc
@third_proc
END

Creating a Variable Array
Variable arrays are defined in the normal way with MAKE (or NEW), or by taking a copy
of a constant array. See the Copy message below.

 MAKE obj Array (Any prototype , Int n , …)

 *Prototype and n are very similar to constant arrays.

The … indicate that you can put some initializing data in the parameter list. If there are
fewer initializers than elements, then the value of the last initializer is used to fill the
array. If no initializers are present, then the array is not initialized: the data may be any
random set.
Take care not to put too many initializers in as you may run out of space on the
parameter stack. A sensible limit is 10 or so. If you need more initializers than this use a
constant Array and take a copy.

 40

Checksum
obj . Checksum (Int num) ⇔ Int
Checksum will take a 16-bit checksum (not specified currently) of all the bytes in the
array and put its value into the array header. It will also return the value of the
checksum so that it may be used for other purposes.

Copy
obj . Copy ⇔ Array
Copy returns a copy of the array in RAM – optionally in the NV-RAM.
-->variable_data := lookup_data . Copy
This creates a new array initialized to the contents of the original. You can modify the
elements as the copy will be in RAM.

Non-volatile Copy
obj . Copy (1) ⇔ Array
This version of the copy message will create an ‘overlay’ copy of the array in the
NVRAM (non-volatile RAM area). The data of the original array is not copied, only some
of the header information. This means that any data in the ‘new’ array will be persistent
over power cycles.
Note that in order for the new non-volatile Array to be located at the same address each
time the controller resets, the Array-Copy messages and any other functions that use
the NV-RAM (like the RAM filing system) should occur once only, and in the same
order, each Reset. The best way to achieve this is to put them in the init routine, and
then always run your code by typing ‘Run’ at the command line, or by powering-on in
RUN MODE.

 TO init
 Free (2) := 10000 ; enough NV-RAM for all my n.v. Arrays
 nv_array1 := array1 . Copy(1)
 nv_array2 := array2 . Copy(1)
 nv_array3 := array3 . Copy(1)
 …
 END

If there is not enough NV_RAM to create the copy, then a ‘Resource Error’ is given.

Element
obj . Element (Int num) ⇔ Any
Each element of the array can be read or set individually. n specifies the element
number. Elements are accessed using the Element message:

 41

 -->Print phrases . Element (1)
 Goodbye-->

Venom abbreviation allows .() to replace .Element(), so you could also use:

 -->Print phrases . (0)
 Hello-->

Elements will be checked for the correct type when they are written. For integer arrays,
the written values will be masked to the correct size.

Length
obj . Length ⇔ Int
Length returns the number of elements in the array.

Pointer
obj . Pointer ⇔ Int
Pointer returns an integer which points to the start of data in the array. Data is arranged
contiguously: elements are in order with no gaps. String constants are arranged as a list
of pointers followed by the string data. The data in an array of pointers has no defined
format.
[The pointer will always be aligned to the number of bytes required by the largest object
used by the host processor. In the case of the VM-1 it will be aligned to an even
address.]

Reset
Reset operates only on Arrays that have been created using the Copy message on
another Array. It will copy the data from the original into the current array. This may be
useful to reset to default values into non-volatile arrays.

Valid
Valid will return TRUE if the checksum in the array header matches the checksum of all
the data in the array. Valid will be TRUE immediately after a Checksum message. It will
be FALSE immediately after the value of any element in the Array is changed. Valid is
useful for checking the integrity of non-volatile parameters.

 42

 TO init
 Free (2) := 10000 ; enough NV-RAM for all my n.v. Arrays
 nv_array1 := array1 . Copy(1)
 IF NOT nv_array1 . Valid ;Check the integrity of the data.
 [
 nv_array1 . Reset ; corrupt? Set the defaults
 nv_array1 . Checksum ; set the checkum.
 PRINT “PARAMS CORRUPT – DEFAULTS LOADED.”
] …
 END

Print
PRINT obj :fw
Printing the array will print out each of the elements in order.

ASYNCHRONOUS SERIAL
AsynchronousSerial objects interface to serial communication ports. The two hardware
ports can operate at standard rates up to 38400 baud, or higher non-standard rates.
Handshaking is optional: hardware (‘RTS & CTS’), software (XON / XOFF) or none.

Summary of messages
MAKE
Baud
Escape
Flush
Format
Free
Get
Handshake
InputBuffer
Look
OutputBuffer
Put
Queue
Timeout
Valid
PRINT TO

 43

Creation

MAKE obj AsynchronousSerial(Int baud_rate, Int port, Int handshake)
When making an AsynchronousSerial object, the baud rate, port and, optionally,
handshaking are specified. Generally the VM-1 uses a group of four channels for each
serial port: Transmit, Receive, Handshake input and Handshake output. If hardware
handshaking is not enabled then the handshake channels are free to be used for other
purposes. Here we create a serial communication object on port 1 talking at 38400 bd,
with hardware handshaking:

 MAKE serial AsynchronousSerial(38400,1,1)

An object like this is created by the default startup routine at either 38400 or 9600 baud,
depending on the state of the User Switch.

The port values are port 1 and port 2.
The baud rates available on the main serial port are from 31 to 500000.
The handshaking takes values of 0 (none), 1 (hardware handshaking) or 2 (software
handshaking). The input and output buffers are both 256 bytes long. This is not
configurable.

You may need to connect RS232, RS485 or other line transceivers to your VM-1 in
order to use this object to communicate with other equipment. Our development kits
include these transceivers on the application board.

Baud
obj . Baud ↔ Int
The Baud active variable controls the baud rate of the serial port.
To ensure a baud rate change happens smoothly, you should ensure that the serial
output buffer is empty before changing baud rate. The baud rates available on the main
serial port are from 31 to 500000. In general the exact baud rate is not possible. Printing
Baud gives the exact rate used.

 44

Escape
obj . Escape ↔ Int
The Escape active variable turns CTRL-C (break) and CTRL-T (list all tasks) on and off.
When escape is 0, CTRL-C & CTRL-T are just treated as normal characters.

Flush
obj . Flush
This message will flush the serial input buffer, discarding any characters in it. It may be
applied to the AsynchronousSerial object itself, or to an InputBuffer subobject.

Format
obj . Format ↔ Int
The Format active variable allows the serial communication format to be changed. The
integer value is a set of flags coded as bits in a binary number:

BIT VALUE MEANING… …WHEN 0 …WHEN 1
0 1 Data length 8 7
1 2 No. stop bits 1 2
2 4 Parity type Even Odd
3 8 Parity used No Yes

The default format is ‘8-NONE-1’ which has a format value of zero.

Free
obj . Free ↔ Int
Free returns the amount of free space in the serial input or output buffer. If it is applied
to the AsynchronousSerial object itself, it returns the input buffer value.

Get
obj . Get ↔ Int
The Get message returns a character from the serial port, but waits if there isn't one
available yet. CTRL-C characters are trapped for the Escape function. If these
characters need to be received, Escape may be turned off with serial.Escape.

 45

Handshake
obj . Handshake ↔ Int
Handshake allows the handshaking function of the port to be set.

Value handshaking
0 NONE
1 Hardware
2 Software

Software handshaking is performed with the XON and XOFF characters in the ASCII
character set. If enabled, these characters assume their control function and may not be
sent over the serial link.

InputBuffer
obj . InputBuffer ↔ <InputBuffer>
This returns a sub-object to the AsynchronousSerial object that allows the input side of
the serial stream to be treated distinctly. Further messages may be sent to the input
buffer object:

sib := serial.InputBuffer
WHILE sib.Queue [serial.Get] ; read chars while they are there.

The input buffer object may also be used with ‘dot-chaining’. This is more readable but
slightly less efficient.

WHILE serial.InputBuffer.Queue [serial.Get]

Look
obj . Look ↔ Int
Look fetches the next character in the serial input buffer, or –1 if there was no character
to fetch.

OutputBuffer
This returns a sub-object to the AsynchronousSerial object that allows the output side of
the serial stream to be treated distinctly. Further messages may be sent to the output
buffer object:

sob := serial.OutputBuffer
IF sob.Free [serial.Put(c)] ; send chars if there is room.

 46

The output buffer object may also be used with ‘dot-chaining’. This is more readable but
slightly less efficient.

IF serial.OutputBuffer.Free [serial.Put(c)]

Put
obj . Put (Int character)
The Put message sends a single character to the serial output buffer, waiting if the
buffer is full. The Put message may be used in preference to PRINT CHR to send
binary data, because PRINT CHR cannot send character 0.
▼ character will be masked to the range 0 – 255

Queue
obj . Queue ↔ Int
Free returns the number of characters waiting in the serial input or output buffers. If it is
applied to the AsynchronousSerial object itself, it returns the input buffer value.

Timeout
obj . Timeout ↔ Int
This active variable controls the timeout for software handshaking. If an XOFF character
shuts off the transmitter and the subsequent XON is missed for some reason, the
transmitter would stay off forever. However if timeout is set to a non-zero value, the
transmitter will be turned on again after the timeout period. Timeout defaults to 10,000
(10 Seconds) currently. It may be turned off entirely by setting it to zero. Its value is set
in milliseconds, up to a bit more than 1,000,000 (~16 minutes). Timeout is set with a
resolution of 64mS. When reading the timeout value you may notice that the value you
read is has been rounded down to the nearest 64.

 47

Valid
obj . Valid ↔ Int
Valid is used to detect errors in serial reception. It returns three error flags as bits in a
binary number. The flags are all reset to zero once Valid has been read.

BIT VALUE MEANING DESCRIPTION
0 1 Parity Error Incorrect parity in the received character
1 2 Framing Error The stop bit was 0 (should be a 1)
2 4 Overrun Error One or more characters lost by serial Rx

You should be able to use Valid to detect serial breaks, i.e. when the serial line is put
into the active state for a period (much) longer than the character frame. If Valid
continuously indicates a framing error, and no new characters have been received then
there is a serial break.

Accepting Print
PRINT TO obj , <print list>
The serial port sends out the printed characters. The following print keywords are
supported:

CR ASCII 13 & 10
BEEP ASCII 7
CHR n Send character ASCII n

DIGITAL
Digital controls both individual and groups of digital channels. The output state may be
set and/or the input state read. Several different digital I/O devices are supported.
Digital channels on the controller itself are numbered from 1 to 47

 48

Summary of messages

MAKE
Asserted
High
Low
NotAsserted
Off
On
Output
Pulse
Toggle
Value
PRINT

Creation
MAKE obj Digital(Int channel , Int channel2)
Single channels or groups of channels (ports) may be created on the different devices
available. If only the channel parameter is specified then a single channel digital I/O
driver is created. If channel2 is also specified, then a group of digital I/O channels from
channel to channel2 inclusive, is created. These may be accessed as a single port. If a
multi-bit digital is being specified, then the channels must be within the same 8-bit group
(i.e. on the same IC), eg. 128 - 135 but not 129 - 136. Digital ports are not possible on
channels 1 - 47 on the VM-1 itself. For example:

-->MAKE channel Digital(17) ;A digital I/O on VM-1 Channel 17
-->MAKE port Digital(128,131) ;A 4 channel port on the 1st I2C bus

You may need to connect PCF8574 ICs to your VM-1 system in order to use parts of
the channel range. Other objects may already be using some of the channels,
precluding their use with Digital. See the channel table in the VM-1 Datasheet.

▼ There are a possible128 digital I/O on each I2C bus. See the VM-1 Datasheet for
numbers on the VM-1. Channels grouped into a port are guaranteed to reach a new
state with only as much skewing as the hardware of the digital I/O device itself
introduces (often only nanoseconds).

 49

Asserted
obj . Asserted ⇔ Flag
The Asserted active variable holds the state of the digital channel. The channel is
turned on when Asserted is set TRUE and off when Asserted is set FALSE. When it is
read, Asserted returns TRUE or FALSE depending on whether the channel is On or Off,
respectively. Whether or not the channel is an input or an output, Asserted returns the
state of the channel as if it were an input – i.e. it reads the actual voltage level rather
than ‘what it ought to be. For groups of channels, setting Asserted will set the whole
group to the requested state, and reading Asserted returns FALSE if any of the
channels are in the Off state,
TRUE if all the channels are in the On state.

-->TO thermostat
MAKE d digital(32)
FOREVER
d.Asserted := temperature < 50
END

High
obj . High
High sets the digital channel to its high voltage state. If the channel is not already
specified as an output channel, this message turns it into one. I2C channels are pseudo
tri-state, so setting a channel to high is the same as setting it to be an input.
For groups of channels (ports), High sets the whole group into the high voltage state.

Low
obj . Low
Low sets the digital channel to its low voltage state. If the channel is not already
specified as an output channel, this message turns it into one. For groups of channels
(ports), Low sets the whole group into the low voltage state.

 50

NotAsserted
obj . NotAsserted ⇔ Flag
The NotAsserted active variable holds the inverse state of the digital channel. When
setting NotAsserted, the digital channel is turned on when NotAsserted is set FALSE
and off when NotAsserted is set TRUE. When read, NotAsserted returns FALSE or
TRUE depending on whether the channel is On or Off, respectively. Whether the
channel is an input or an output, NotAsserted returns the inverse state of the channel as
if it were an input. For groups of channels, setting NotAsserted will set the whole group
to the requested state, and reading NotAsserted returns TRUE if any of the channels
are in the Off state, FALSE if all the channels are in the On state.

-->TO thermostat
MAKE d digital(32)
FOREVER
d.NotAsserted := temperature > 50
END

Off
obj . Off
Off sets the digital channel to its inactive state, which is high for all the devices presently
supported. If the channel is not already specified as an output channel, this message
turns it into one. I2C channels are pseudo tri-state, and so setting a channel to Off is the
same as setting it to be an input. For groups of channels (ports) Off sets the whole
group into the inactive state.

On
obj . On
On sets the digital channel to its active state, which is low for all the devices presently
supported. If the channel is not already specified as an output channel, this message
turns it into one. For groups of channels (ports) On sets the whole group into the active
state.

 51

Output
obj . Output ⇔ Flag
The Output active variable allows the I/O direction of a channel or port to be set or read.
Setting Output TRUE makes the channel or port into an output, and setting Output
FALSE makes the channel or port into an input. Output returns TRUE or FALSE
depending upon whether the port or channel is an output or an input respectively. If
there is a mixture of inputs and outputs in a port, Output will return TRUE. Digital
channels on PCF8574 ICs on an I2C bus always return TRUE for Output because they
are only pseudo tri-state devices. The I/O direction of channels in a port is guaranteed
not to be skewed, up to the limit defined by the hardware.

Pulse
obj . Pulse
Pulse momentarily pulses the channel or set of channels to their opposite state.

-->MAKE d digital(128)
-->d . Pulse

The minimum pulse width is 1 microsecond, but is likely to be considerably longer than
this.

Toggle
obj . Toggle
Toggle flips the state of a digital channel from On to Off and vice versa. For groups of
channels, the states of all the channels are flipped.

Value
obj . Value ⇔ Int
Value holds the numeric representation of the state of the channels in a port made up
from a single channel or group of channels. A high state is a binary 1 and a low state is
a binary 0. States output using Value are guaranteed not to be skewed up to the limit
defined by the hardware.
The least significant bit of the number is given by the state of the lowest numbered
channel in the port.

 52

As with On, Off etc., if the channel is not already specified as an output channel, setting
a value using this message turns it into one. Also, reading the value will return the
numeric representation of the levels actually on the channels, whether the port is inputs
or outputs.

▼ Uses values in the range 0 to 2n - 1, where n is the number of channels in the port.

It may be set to any value. Binary bits in the value that overflow the port size are
masked off.
Output to multi-bit ports is guaranteed not to be skewed up to the limit defined by the
hardware.

Printing
PRINT obj :f1
If no format specifier is used, the state of the channel or port (as defined in Asserted) as
"ON "or "OFF", always with 3 characters is printed. If a format specifier greater than
zero is supplied, then the value of the port is printed in square brackets.

-->MAKE d digital(128)
-->PRINT d
OFF-->d.On
-->PRINT d
ON -->PRINT d:3
[Digital: 0]-->

FILE
A file object controls a file in a file system. A file is a sequence of data items of one of
these types:

8 bit unsigned integer
16 bit signed integer
32 bit signed integer
32 bit floating point
Text

 53

Data can be written to the end of a file, and can be read in sequence from the beginning
of the file or from any selected point.
Any element of a file can be accessed by its numerical position in the file and read or
changed. Any file can be printed, in a format that depends on the data type, and a text
file can also accept a print job.
The interface is designed to be as similar as possible to that of the buffer object type.

Summary of Messages

Put
Get
Queue
Reset
Empty
Length
Readpoint
Close
Element
Find
Lock
Name
Unlock
Help
PRINT TO
PRINT

Creation
The only way to create a file variable is by sending the Open message to a FileSystem
object. This is also documented in the FileSystem section for the Open messge.

fs.Open(String name, Any Prototype [,Int maxlength])
=> file object

name - is the name of the file. Upper and lower case letters and numerals are allowed in
the file name, as are the following punctuation characters:

! $ % - _ + ~ . / #

 54

The maximum file name length is 15 characters.
Note that '/' and '.' are not interpreted in any special way, and that this file system does
not support subdirectories.

Prototype denotes the data type of the file contents and is one of the following:

8 8 bit unsigned integers
16 16 bit signed integers
32 32 bit signed integers
0.0 or any floating point value Floating point
"" or any string value Text

If a file with the same name exists, it is opened with the read pointer set to the
beginning of the file and the write pointer set to the end of the file. If no file existed, an
empty file is created with read and writes pointers at 0. If a third parameter maxlength
is given, it sets a maximum length for the file. If created this way, any write to the file
that results in its length exceeding that target will cause the first 512 bytes to be
removed from the file. This is useful for log files where only recent data is of interest,
and in such cases can remove the need for extra housekeeping code to prevent the
filesystem from running out of space. Note that the maxlength parameter is in bytes and
intended for use with text files. This parameter, if specified, must be at least 1024.

Example

a := fs.open("aaa.txt", "")
b := fs.open("temp", 1.0)

Messages

Put
f.Put(Any value)

The data type of the parameter depends on the file type.
For integer file type, the value must be an integer. It is truncated if necessary to the size
of the file data type. For the floating point file type, the value must be a floating point
type. For a text file, the data can be a single character or a fixed string. The data is
written to the end of the file.

 55

Get
f.get => Any
Returns a value from the current read point in the file and advances the read pointer to
the next element. It is an error to attempt to read past the end of the file. (See Queue
Message for how to avoid this)
The type of data returned is:

Integer for all type of integer file
Float for a float file type
Integer value of a single character for a text file

Note that a text file created with PRINT TO and containing line breaks will return the
sequence 13, 10 at the line breaks (ASCII CR and LF).

Queue
f.Queue =>Int
Returns the number of elements remaining to be read from the file. For a text file, an
element is a single character.

Reset
f.Reset
Resets the read pointer to the beginning of the file.
This is equivalent to f.Readpoint := 0.

Empty
f.Empty
Removes all the data in the file, leaving read and write pointers at zero. The file is then
in the same state as if it had been newly created.

Name
f.Name ⇔ string
Gets or sets the file name. Assigning to f.name renames the file.
The returned value is a fixed string whose physical address is the file name in the
directory entry. As with any message returning a fixed string, great care should be taken
if assigning it to a variable, as the string represented by that variable will only be valid
as long as the file is open. Completely safe and useful operations include:
Printing a file name: PRINT f.name
Appending a file name to a text buffer: buf.Put(f.Name)

 56

Length
f.Length =>Int
Returns the length of the file in elements of the file's specified type.
For text files, this is the number of characters, counting each line separator as the two
characters CR, LF.

Readpoint
f.Readpoint ⇔ Int
Gets or sets the point at which the next Get message will read data from the file. The
file starts at position 0.

Close
f.Close
The file remains in the file system but is no longer associated with any variables that
referred to it and no messages can be sent to it.

Element
f.Element(Int Elementnumber) ⇔ Any
Sets or returns a single data element of the file.
For a text file the value is treated as an integer.
The file starts at Element 0. It is relevant to know that in a text file created by PRINT
TO, a line break takes up two character elements (CR=13 and LF=10).

Find
f.Find(String pattern [, Int startpos]) => Int
Searches a text file for a string supplied either as a fixed string or as the contents of a
text buffer.
Find returns an integer showing the element position of the beginning of the first
instance of the search pattern if found, or -1 if not found.
The search start at the character position startpos in the file if specified, or else at the
beginning of the file which is equivalent to a startpos value of 0. The search pattern has
a maximum size limit of 255 characters. The Boyer-Moore search algorithm is used,
which is very fast, especially with a long search pattern.

 57

Lock
f.lock =>Int
Prevents other tasks from accessing the file until it has been unlocked by an Unlock
message. Returns the current lock level which will have been incremented by applying
this Lock message.

f.Lock(Int Level)
f.lock := Level

Either of these forms sets the locking level to an explicit number. A level of 0 unlocks
the object.

Unlock
f.unlock
Unlocks the file allowing other tasks to access it.

Help
It it worth noting that the standard help message, which shows the type of a variable,
additionally shows the file name for a file variable.

Example

-->HELP a
It is a text file named "abc.txt"
-->

PRINT TO
PRINT TO f, list
A text file can be the destination of a print operation. The print output is appended to the
end of the file in exactly the same way as by a series of Put messages.

PRINT
PRINT f[: Int n1[: Int n2]]
Lists the contents of the file. Text Files are displayed in their normal text format other
file types are displayed one item per line.
If the colon(s) and format code(s) are present they are interpreted in the same way as
when printing Buffers of various types:

File Type 1st fromat number 2nd format number
Text If positive, print first n1 chars of file Not present

 58

If negative, print last (-n1) chars of file
Text First char position in file to print Number of chars to

print.
All Integer
Types

Minimum field width (number of characters to
print per number

Not used

Float Minimum field width Number of decimal
places

OPERATING SYSTEM
This is the class that provides access to system-wide features of the hardware,
operating system and compiler. Note that Venom-SC allows all system messages to be
called by just typing the message name alone, e.g.

Reset
Is the same as

system.Reset

Summary of messages

MAKE
Checksum
Debug
ErrorAction
Free
Output
Protect
Reset
Run
RunMode
UserSwitch
Valid
PRINT
Creation

MAKE obj OperatingSystem
An object called system of type OperatingSystem is made by the default startup routine:

MAKE system OperatingSystem

▼ It is only useful to make one OperatingSystem object.

Checksum
This is used to find the checksum of all the bytes in the Venom-SC code.

 59

Copy
Copy is used to either copy the current Venom-SC flash device in its entirety (Venom
system and any application code – or – to download a new version of Venom-SC from
the Micro-Robotics website www.microrobotics.co.uk The syntax of the flash
programming commands is:

Copy(0,flags) ; to copy the current flash
Copy(1,flags) ; to download a new version

The instructions and progress reports for each operation will appear at the terminal.
The flags parameter is a binary pattern that tells the copy message which optional
operations to perform in sequence. In general use a value of TRUE (-1) for the most
comprehensive operation. See the table for the meaning of individual flags.

Copy(0,TRUE) ; ID, erase, program, verify.

FLAG VALUE ACTION
ID 1 Print ‘Silicon signature’ ID
ERASE 2 Erase the device
PROGRAM 4 Program the device
VERIFY 8 Verify the program

In order to use the Copy message you will need the correct hardware. This is currently
the VM-1 Control Computer and the 5805 Application Board. Code that has been
downloaded from the website can’t be verified by Copy, but you can verify the new code
by calling the Valid message when you first use it.

 60

http://www.microrobotics.co.uk/

Important note: If the device has not been erased before programming, then the copy or
download operation will fail ungracefully. The controller will reset on the watchdog. You
will probably have to reset the controller and you may have to exit from the terminal
emulator.

Debug
Debug (Int n, …) ⇔ Flag
The debug command has many options allowing the internal state of the Venom-SC
compiler & OS to be viewed and modified. These have not settled enough to document
as yet. Typing Debug alone will list the available options.

ErrorAction
Setting this to the value ‘1’ will force Venom to reset the controller hardware if a runtime
error occurs.

ErrorAction := 1

Note: ErrorAction defaults to 1 when the controller is reset, but the default startup
procedure turns this safety feature off if the program mode switch is on. Meaningful
error action values may be expanded beyond 0 and 1 in future releases.

Free
Free ⇔Int
Returns the amount of free RAM in the controller (in the system heap, actually).
It will also report on other areas of the controller’s memory.

Free (0)⇒ Heap memory free
Free (1)⇒ Largest free block in the heap
Free (2)⇒ Total NV RAM8 size
Free (3)⇒ NV RAM free
The size of the NV RAM area may be set using

Free (2) := SIZE

If you change this size Venom has to reset itself, as it is a major upset internally. For
the security of the heap memory, all applications should include a line early on in the init
procedure to set the NV RAM size to zero, or another constant value large
enough to supply all the non-volatile RAM needed by your application.

 61

Output
Output ⇔ Any
Output is the current ‘default output stream’.
Setting Output redirects the text from PRINT, LIST and HELP.

Output := new_output_device

If you redirect the output to NIL then the output is simply discarded:

Output := NIL

Reading Output returns the current default output stream object.
Later, the redirection of system output – e.g. the prompt and error reports – will be
possible too.

Protect
Protect (Int flags)
The protect controls the ‘ROMing’ of Venom application code. It is used to create a
protected application in the Flash memory. It is also used to clear out an application
from flash memory. The table details the function of the Protect message.

Protect (0) ⇒ Erases the Application area of the Flash
Protect (1) ⇒ Programs the application code into the Flash
Protect (2) ⇒ Report the application area statistics
Protect (4) ⇒ Returns the device ID code, or ‘Silicon Signature’ of
 the flash device.

The Protect message returns the ‘Silicon Signature’ of the flash if a
valid, write enabled device was found, zero otherwise. This device ID code is best
printed out as a 4-digit hex number:

-->PRINT ~protect(4):-4
01A4-->

You may continue to compile procedures into RAM after putting code into flash – the
system will take care of using the latest version of each procedure. You may call
Protect(1) repeatedly without erasing procedures in between, until the application area
is full.

 62

Currently, any newly created procedures in RAM will be removed at startup if a
ROMed application is present.

The full ROMing functionality is still under development, but will be at least as flexible as
described above. There will be at least 128K, probably 192K of application area
available. Venom-SC is very efficient with application memory, so this should be enough
for very large applications.

Reset
Reset
Resets the controller. If it is in run mode then the application will run, else you will get
the startup banner.

Run
Run
Runs the application as if in Run Mode, even if the program mode switch is on.
⇔

RunMode
RunMode
Returns TRUE if the system is in Run Mode, i.e. if the program mode switch is off, or
if you typed ‘Run’ at the command line.

UserSwitch
UserSwitch (int switch) ⇔Int
Reports the state of the two switches on the controller. It takes a parameter that
specifies which switch: 1 for the program mode switch (labelled RUN - PRG), and 2 for
the user switch (labelled 9K6 - 38K).

Valid
Valid ⇔Int
When a new version of Venom-SC is released, a checksum is taken over all the bytes
of code in the Language, Operating system and Objects. This checksum value is written
into the code, enabling you to validate your copy of Venom-SC. Valid will return TRUE (-
1) if the checksum is good, FALSE (0) otherwise. Of course, if your Venom-SC code is
highly damaged then you won’t be able to call Valid.

 63

PRINT Valid
-1-->

PRINT
PRINT system
Printing the system object gives the size of the symbol table and global area, and the
amount of the heap memory free. Other general system information may be added from
time to time.

-->print system
Symbol table 55 bytes
8 Global variables
99814 Heap bytes free (biggest block 99700)
NV RAM area 0 bytes (0 unused)
-->

PULSE COUNTER
PulseCounter is used to count pulses on one of the ‘clock input’ channels.

Summary of messages

MAKE
Count
Reset
PRINT

Creation
MAKE obj PulseCounter (Int chan, Int edge, Int chanx)
A new PulseCounter object is created with a zero pulse count. chan is one of the clock
input channels, and edge is one, two or three. The optional parameter chanx is
explained below.

Relating Clock and Pulse I/O
Each PulseCounter object uses a counter/timer register from the processor’s internal
TPU module to hold the count. This means that a pulse I/O object such as
PulseWidthOut or PulseWidthIn can’t use the register.

 64

The optional parameter chanx allows you to choose which of the pulse I/O channels
you wish to become unavailable. If you don’t include chanx, a default channel will be
used:

Pulse counter input channel Default channel used
1 18
2 6
16 3
17 4

Examples

MAKE p_in1 PulseCounter (1,1) ;channel 1. Rising edge.
MAKE p_in2 PulseCounter (1,2,19) ;chan 1 Falling edge.

In the first example the pulse count input is on channel 1, and the associated default
channel, 18, becomes unavailable. In the second example we chose to make channel19
unavailable instead.

▼ The maximum number of PulseCounter objects is 4, limited by the number of clock
input channels available on the VM-1.

If the input clock pulse width is less than approximately 0.1�s for single-edge detection
or 0.16�s for 2-edge detection, pulses may be missed.

Count
obj . Count ⇔Int
Returns the current pulse count.

-->PRINT p . Count
3245-->

▼ The PulseCounter object can keep track of over 2 billion pulses.

 65

Reset
obj . Reset
Resets the pulse count to zero. For example:

-->PRINT p . Count,CR
3245
-->p . Reset
-->PRINT p . Count,CR
0
-->

Printing
PRINT obj
Prints the current pulse count in square brackets:
-->PRINT p
[PulseCounter: 10]

PULSE WIDTH IN
PulseWidthIn is used to measure the width or period of incoming pulses on one of VM-1
channels 3, 4, 5, 6, 18 or 19. Pulses or periods from 8µs to over 35 minutes can be
measured with a resolution of 1µs.

Summary of messages

MAKE
Go
Done
Period
PRINT

Creation
MAKE obj PulseWidthin (Int chan, Int mode)
A new PulseWidthin object is created. chan must be one of: 3, 4, 5, 6, 18 or 19. mode
has the following meanings:

0 Measure low pulse width: falling to rising edge
1 Measure high pulse width: rising to falling edge
2 Measure period between falling edges
3 Measure period between rising edges

 66

Examples:

MAKE pw1 PulseWidthIn (3, 1) ;VM-1 channel 3 High pulse width
MAKE pw2 PulseWidthIn (18, 3) ;chn 18 Period between falling edges

Go
obj . Go
Starts a measurement cycle. The time measurement will start at the next leading edge
as specified by mode when the object was created, and the measurement is complete
as soon as the correct type of trailing edge is encountered.

Done
obj . Done ⇔Flag
Returns True (-1) when the measurement cycle is complete, i.e. both the leading and
trailing edge have been seen, or 0 before this condition is met.

Period
obj . Period ⇔Int
Returns the measured period in microseconds. Periods below 8µs are not measured
correctly because of interrupt response limitations, and the maximum useful value that
can be returned is 214783647 (max value for a signed 32 bit integer)

The Period message can be used in two ways:

1. By itself, the Period message will initiate a measurement cycle and wait for the
result before returning. The task is suspended while waiting.

2. In conjunction with the Go and Done messages, the task can loop and execute other
code while waiting. When the Done message returns true, the next period message will
return immediately with the value just measured. If a period message is sent any time
after a Go message and before the measurement cycle is complete, the task will wait.

 67

; example of 1st usage
width := pw.Period ; task is suspended while waiting
; example of 2nd usage
pw.Go
while NOT pw.Done
[; other code in loop executed while waiting
]
width := pw.Period

PRINT
obj . Print
Prints, inside square brackets, the text “PulseWidthIn : “ followed by the last measured
value, followed by a new line. No measurement cycle is initiated. If no measurement
has been made since the object was created the value printed is -1. The Print message
is not recommended for general programming with PulseWidthIn objects.

Example:
-->print pw
[PulseWidthIn: 456]
-->

PULSE WIDTH OUT
PulseWidthOut generates pulse trains with variable Mark/Space ratio and frequency. A
PulseWidthOut object may be set to generate a continuous signal, or a pulse train
containing a specific number of pulses.
Care should be taken to ensure that the creation of a PulseWidthOut object does not
use the same internal counter register as a PulseCounter or Shaft object. Normally the
PulseWidthOut Width and Period values are given in units of 1µS however this may be
altered using the Format message. Timing accuracy is governed by the VM-1 crystal
oscillator.

 68

Summary of messages
MAKE
Asserted
Count
Format
NotAsserted
Off
On, Go
Period
Queue
Width
PRINT

Creation
MAKE obj PulseWidthOut (Int channel, Int period, Int width, Int polarity,Int count)
A new PulseWidthOut Object is created. Note that the pulse train will not actually start
until the Go or On message is sent.
The table below describes each of the parameters.
Parameter Range of values purpose
Channel 3,4,5,6,18,19 The VM-1 channel to use
Period 2-65536 The period of the output signal
Width 0-(Period-1) The width of the output signal
Polarity 0 or 1 0: Active low; 1: Active high
Count 0-2,147,483,647 Optional. The number of pulses to

generate; 0 means continuous signal.

In general channels 5 and 19 are the best to use for PulseWidthOut, especially if high
frequency pulses are required.

Example creation code
;Create a 1:10 mark:space PWM waveform
MAKE pwm pulsewidthout(6,10000,1000,0)
pwm . On ;turn it on

The VM-1 channels may be used by other objects.

 69

▼ The maximum number of PulseWidthOuts is 6 (one per available channel). The
maximum value of period is 65536. The minimum value of period is 2, but also see
warning below.

Warning: When generating a defined-length pulse train using count,
PulseWidthOut uses interrupts to count the pulses. If the period becomes too
small the VM-1 may start to behave erratically. The exact threshold for this
depends on interrupt loading. Keep the period above 100uS when using count
until this has been characterised.
A similar restriction applies to all channels other than 5 & 19. When generating
high frequency continuous pulse trains, setting the period and width values may
result in an output that misses a state-change. Again, keeping the period above
100uS until this has been fully characterised will be well into the safe region.

Asserted
obj . Asserted ⇔Flag
Setting Asserted TRUE starts a pulse train (like On), and setting it FALSE stops the
train (like Off). Asserted returns TRUE if the pulse train is currently active, FALSE
otherwise.

Count
obj . Count ⇔Int
Count allows the pulse train length to be read or set.
Setting the Count takes effect the next time the train is triggered (using Go or On). It has
no effect on a currently active pulse train.
Reading the Count returns the number last set during creation or using Count.

NotAsserted
obj . NotAsserted ⇔Flag
Setting NotAsserted TRUE stops a pulse train (like Off), and setting it FALSE starts the
train (like On). NotAsserted returns FALSE if the pulse train is currently active, TRUE
otherwise.

 70

Format
obj . Format := Int
Setting format allows the timing, or even the source, of the clock pulses to be changed
in the PulseWidthOut object. The value passed to the format message consists of a bit
field. The lower three bits
(bits 0 – 2) determine the source of the clock pulses – one of several divisions of the
processor clock crystal or even a VM-1 channel. The table shows the clock rate or VM-1
channel selected depending on the channel and bits 0 – 2. The clock rate is shown as
Ø/N where Ø is the VM-1 clock crystal frequency (normally 16Mhz) and N is a division
ratio. The column in bold is the default setting.
VM-1 channel/
Bits 0-2

000

001 010 011 100 101 110 111

3 Ø Ø/4 Ø/16 Ø/64 2 17 Ø/256 16
4 Ø Ø/4 Ø/16 Ø/64 2 17 Ø/1024 -
5 Ø Ø/4 Ø/16 Ø/64 2 Ø/1024 Ø/256 Ø/4096
6 Ø Ø/4 Ø/16 Ø/64 2 1 Ø/256 -
18 Ø Ø/4 Ø/16 Ø/64 2 1 17 Ø/1024
19 Ø Ø/4 Ø/16 Ø/64 2 1 17 16

The next two bits (bits 3 & 4) determine which edges to count on.

Bits 4,3 count on edge
00 Rising
01 Falling
10 Both
11 Both

Examples:
p.Format := %00011 ; use units of 4uS.
p.Format := %01011 ; VM-1 channel 2 falling edge is the clock.

 71

On, Go
obj . Go
obj . On
On starts a pulse train. On is necessary to start the train after the PulseWidthOut has
been created. Every time the message On is given, the number of pulses to be sent out
is reset to the value of Count. If this was zero, then the pulse train keeps going
indefinitely. Go has exactly the same effect as On.

Off
obj . Off
Off turns off the pulse output at the next edge.

Period
obj . Period ⇔Int
An active variable that allows the overall period of the waveform to be read or set. The
units are determined by the clock source, but the default is µS. The minimum Period
value is 2, but see the warning notice in Creation. If Period is set to less than the
current Width then the output will go to the 100% duty state. As soon as Period is
greater than Width again, pulses will reappear. If you have Count set when Period is
less than Width, counting of pulses will continue even if no real pulses are generated. If
you call both Width and Period, it is possible under some circumstances for one of
these messages to have to wait for a maximum time given by Period. However, if you
stick to a constant Period and vary Width, or vice versa, this will never occur.

Queue
obj . Queue ⇔Int
no count has been set it returns 0.

Width
obj . Width ⇔Int
Allows the mark period of the waveform to be read or set. The units are determined by
the clock source, but the default is uS.
If Width is set to zero or less, then the output will go to the 0% duty state, i.e. pulses will
not be generated. If Width is set to more than the current Period then the output will go
to the 100% duty state so the output is turned on continuously, no pulses will be
generated. As soon as Width is less than Period again, pulses will reappear.

 72

If you have Count set when Width is zero, or Width is greater than Period, the count will
continue, even if you cannot see the pulses.
If you change both Width and Period, it is possible under some circumstances for one of
these messages to have to wait for a maximum time given by Period (while swapping
tasks). However if you stick to a constant Period and vary Width, or vice versa, this will
never occur.

Printing
PRINT obj
Prints the current width and period in square brackets.

PRINT pwm
[PulseWidthOut: 1000/10000]

Die
Die turns off the pulse train immediately and removes the object.

SERIALIO
SerialIO allows communication with a host of I/O ICs that communicate on the
‘Microwire’ and ‘Serial Peripheral Interface’ (SPI) busses. Because there are so many
different devices available, and each has a slightly different protocol, the SerialIO object
provides a general interface. This is analogous to the low level I2C Net commands, e.g.
I2CBus.Put(). Each SerialIO object controls four VM-1 channels. These are connected
to the ‘Chip select’, ‘Serial Clock’, ‘Data in’ and ‘Data out’ lines of the device(s). It is
possible to multiplex the Chip Select signal to allow more devices to be put on the bus.
These devices would not be fully independent as they share the Serial-Clock, Data-in
and Data-out signals. Thus if you want to use them in different tasks you will need to
use the locking provided.
The connections from the VM-1 to a device are as follows.
VM-1 FUNCTION CONNECT TO
µwire Din Device’s data out*
µwire Dout Device’s data in
µwire clock Device’s serial clock
µwire Chip select Device’s chip select
*Not necessary if no data comes back.

 73

Summary of messages

MAKE
On
Put
Off

Creation
MAKE s SerialIO (Int bits)
Where bits is the number of bits to be clocked in or out with each access. The maximum
number of bits is 32. If your application requires several different word lengths, then you
can define an object to handle each length. As well as returning the object, this
command will initialise the VM-1 channels to be used. For example we might want 12
bits sent.

MAKE s SerialIO(12)

On
obj . On
This pulls the Chip Select signal low to start a communication.

Put
obj . Put(Int n) ⇔Int
Data is sent and received with the same command. This is because some devices
receive input data at the same time as sending output data. The message to use is:

s.Put(n)

This will clock the value of n out as 12 bits. It will also clock in any data output by the
device. This is returned by Put and may be used in any way, for example:

value := s.Put(27)

Data is clocked in and out MSB first.

Off
obj . Off
This pulls the Chip Select signal high to end a communication.

 74

SHAFT
Shaft monitors quadrature-phase inputs to keep track of the position of rotary (shaft)
encoders. Up to 2 shaft encoders producing edges with a phase difference and overlap
of at least 0.1�S and a pulse width of at least 0.16�S may be monitored.

Summary of messages

MAKE
Count
Reset
PRINT

Creation
MAKE obj Shaft (Int ch1, Int ch2 , Int chanx)
A new Shaft object is created, monitoring channels ch1 and ch2. The initial count is
zero. The channels ch1 & ch2 must be paired: 1 with 2 and 16 with 17.

Note: if the count value counts the wrong way, then you will have to alter the
hardware in order to swap which phase of the signal goes to which channel.

Relating Clock and Pulse I/O
Each Shaft object uses a counter/timer register from the processor’s internal TPU
module to hold the count. This means that a pulse I/O object such as PulseWidthOut or
PulseWidthIn can’t use the register.

MAKE encoder1 Shaft(16,17)
MAKE encoder2 Shaft(1,2,3)

The first example creates a Shaft object reading channels 16 and 17. Channel 18
becomes unavailable by default. The second example uses the optional parameter
chanx to create a Shaft object reading channels 1 and 2. Channel 3 becomes
unavailable.

Count
obj . Count ⇔Int
An active variable that holds the count of quadrature phase edges seen by the Shaft
object. The count can be set or read.

 75

 76

▼ Count can hold values up to around ±2 billion, but only values up to around 1 billion
may be held by variables. If the phase difference and overlap between the two input
clocks is less than approximately 0.1�s, or the pulse width is less than 0.16�s, the VM-
1 will lose
counts. If the phase is very near zero, then the count may go either up or down.

Reset
obj . Reset
Resets the count to zero.

Printing
PRINT obj
Prints the current value of the Count.

	Senior Design
	Table of Contents
	Overview of project
	Major System Components and their Interrelationships
	Microcontroller001
	Microcontroller002

	Hardware Documentation
	Circuit Schematics
	Entire Network Overview
	MicroController002
	Shaft Encoder
	Stepper Motor
	Torpedo Firing Controls

	Parts List
	Design Steps Taken for Easy Maintenance of the Hardware

	Software Documentation
	Master Control
	XML/RPC

	Serial interface
	Serial Interface(Controller 001)
	Serial Interface(Controller 002)

	User interface Specifications
	Steps Taken for Easy Maintenance

	ABET Concerns
	Economic
	Environmental
	Sustainability
	Manufacturability
	Ethical
	Health and Safety
	Social

	Project Management information
	Time spent by Eric Wurtz on the design phase of project
	Time spent by Brian Rittner on the design phase of project
	Time spent by Scott Wadell on the design phase of project
	Time spent by Steve Nolte on the design phase of project

	Project Schedule
	Miscellaneous Design Documentation
	Circuit Layout
	Channel Capabilities
	Pin Usage

	Design documentation
	Arrays
	Checksum
	Copy
	Non-volatile Copy
	Element
	Length
	Pointer
	Print

	ASYNCHRONOUS SERIAL
	Summary of messages
	Creation
	InputBuffer
	Look
	Put
	Queue
	Timeout
	Valid
	Accepting Print

	DIGITAL
	Creation
	Asserted
	High
	Low
	NotAsserted
	Off
	On
	Output
	Pulse
	Toggle
	Value
	Printing
	Put
	Get
	Queue
	Reset
	Empty
	Name
	Length
	Readpoint
	Close
	Element
	Find
	Lock
	Unlock
	Help
	PRINT TO
	PRINT
	Checksum
	Copy
	Debug
	ErrorAction
	Free
	Output
	Protect
	Reset
	Run
	RunMode
	UserSwitch
	PRINT
	Reset
	Printing
	Creation
	Go
	Done
	Period
	PRINT
	Creation
	Asserted
	Count
	NotAsserted
	Format
	On, Go
	Off
	Period
	Queue
	Width
	Printing
	Die
	Creation
	On
	Put
	Off
	Creation
	Count
	Reset
	Printing

	Button90:

